A New Two Habit Model: Changes and Improvements Compared to the Previous Database

James Coy, Masanori Saito, Jiachen Ding, Tong Ren, Ping Yang Texas A&M University, Department of Atmospheric Sciences

CERES Meeting October 10-14 2021

Reasons for a new Two-Habit Model Database

- Current ice cloud models have inaccurate backscattering for moderate size parameters.
 - Improved Geometric Optics Model less accurate.
 - Affects lidar-based retrievals and assumptions needed to be made.
- Invariant Imbedding T-Matrix Method (IITM) does not handle small-scale surface roughness.
 - Computationally expensive so only smooth particles used.
- The Two-Habit Model (THM) follows the Thompson et al. 2008 cloud ice scheme than other commonly used single-scattering databases.
 - Used with the Weather Research and Forecasting (WRF) Model.

Recap: Full Resolution Two Habit Model (THMv3)

- Full resolution database of new THM developed.
 - 60-particle distorted single column and 20-particle distorted
 20-column aggregate ensembles.
 - \circ Volume-projected area equivalent sphere diameter size characterization (D_{VA}) .
 - Maintains microphysical/optical consistency among individual particles of the ensembles.
 - Same wavelength/size resolution and range as THMv2.
 - IITM calculations for size parameters < 25 (D_{VA}).
 - Accounted for small-scale surface roughness of hexagonal column by using ensemble of distorted single columns.

$$D_{VA} = \frac{3V}{2A_p}$$

V: Particle volume A_p : Projected area

	New THMv3	
Wavelength	470 bins (0.2 – 200 μm)	
Size (D_{VA})	189 bins (2.0 – 10000.0 μm)	

Recap: Lidar Version of THMv3 In Development

- 355, 532, and 1064 nm considered for lidar version of THMv3.
- Physical Geometric Optics Model (PGOM) used for lidar version of THMv3.
 - Offers more accurate backscattering calculations than IGOM.
 - PGOM-calculated phase matrix truncated and added to existing IGOM-calculated phase matrix.
- Initial THMv3 532 nm lidar ratio results revealed overall lower values than THMv2.
 - Within ranges observed by Seifert et al. 2007 (29 33 sr over Indian Ocean).
 - \circ Within ranges observed by Josset et al. 2012 (33 \pm 5 sr over the global ocean).

Current Progress: Revised Full Resolution THMv3 Developed

- Revisions/progress performed for full resolution THMv3:
 - \circ D_{VA} converted to maximum dimension (D_{max}).
 - Resulted in aggregate volume inconsistency to THMv2 which was corrected.
 - Adjusted habit fraction formula for microphysical consistency.
 - Only IITM and IGOM calculations used currently.
 - PGOM backscattering to be eventually added for ultraviolet/visible/near-infrared wavelengths.
 - Bulk radiative parameterization completed for Fu-Liou radiative transfer model.

	Revised THMv3	
Wavelength	470 bins (0.2 – 200 μm)	
Size (D_{max})	189 bins (2.206 – 11031.337 μm)	

Converting D_{VA} to D_{max} for THMv3 & THMv2 Optical Consistency

- D_{VA} used to maintain microphysical/optical consistency among distorted particles of the ensemble of THMv3.
 - Particle distortion causes changes in particle volume and projected area.
 - \circ Scaling size by D_{max} unreliable.
- After THMv3 was developed using D_{VA} , particle size converted to D_{max} .
 - Needed THMv3 and THMv2 to be optically consistent.
 - A scaling factor (c) applied to D_{VA} values to derive corresponding D_{max} values.

THMv2 & THMv3 Individual Habit Comparisons

Correcting the Aggregate Volume Inconsistency Between THMv2 & THMv3

- Converting THMv3 D_{VA} to D_{max} revealed an interesting inconsistency to THMv2.
 - \circ THMv3 volume increasingly inconsistent with THMv2 as D_{max} increases.
 - \circ THMv3 projected area becomes consistent with THMv2 as D_{max} increases.
- Determined that THMv2 aggregate volume is inaccurate.
 - Same aggregate ensemble used for THMv3.
 - \circ THMv3 size scaled by D_{VA} initially which is dependent on volume and projected area.
 - \circ Inaccurate D_{VA} will result in inconsistencies in microphysical/optical properties between THMv2 and THMv3.

THMv2

THMv3

Initial THMv3 Microphysical Consistency to Field Campaigns

- THMv3 initially followed same habit fraction formula as THMv2.
 - \circ Dominant single column ensemble limit at 30 μm and aggregate slope at 0.005.
- Ice water content computed from THMv3 inconsistent with Ice Water Content Measured from 11 field campaigns.
- Median mass diameter generally consistent except for large values.

Improving THMv3 Microphysical Consistency by Adjusting Habit Fraction

- Ice water content/Median mass diameter dependent on volume.
 - THMv3 volume dependent on mixture of the 2 habit ensembles.
- Habit fraction formula adjusted to improve microphysical consistency.
 - \circ Dominant single column ensemble limit now at 45 μm and aggregate slope at 0.0076.
 - Ice water content/Median mass diameter consistency nearly twice as improved.

Bulk Radiative Parameterization for Fu-Liou RTM

- Parameterization performed for 18 shortwave bands and 14 longwave bands.
- Utilizes a 10-term polynomial equation for bulk extinction efficiency, scattering albedo, and asymmetry parameter.
 - Smaller terms fail to capture sharp fluctuations in bulk scattering properties for infrared bands.
 - \circ Coefficients (c_i) derived from least square linear regression.

Shortwave Bands						
#	Bandwidth (µm)	Band Avg (µm)	Gases			
1	0.175 - 0.224	0.21	03			
2	0.224 - 0.243	0.23	03			
3	0.243 - 0.285	0.26	03			
4	0.285 - 0.298	0.29	03			
5	0.298 - 0.322	0.31	03			
6	0.322 – 0.357	0.33	03			
7	0.357 – 0.437	0.38	03			
8	0.437 – 0.497	0.46	O3 / H2O			
9	0.497 – 0.595	0.53	O3 / H2O			
10	0.595 – 0.689	0.63	O3 / H2O			
11	0.690 - 0.794	0.72	H2O / O2 / O3			
12	0.794 – 0.889	0.83	H2O			
13	0.889 – 1.042	0.94	H2O			
14	1.042 - 1.410	1.16	H2O			
15	1.410 – 1.905	1.57	H2O / CO2			
16	1.905 – 2.500	2.10	H2O / CO2 / CH4			
17	2.500 - 3.509	2.84	H2O / CO2 / O3 / CH4			
18	3.509 – 4.000	3.67	H2O / CO2 / CH4			

Longwave Bands					
#	Bandwidth (μm)	Band Avg (μm)	Gases		
1	4.54 – 5.26	4.78	H2O		
2	5.26 – 5.88	5.47	H2O		
3	5.88 – 7.14	6.30	H2O		
4	7.14 – 8.00	7.43	H2O / CH4 / N2O		
5	8.00 – 9.09	8.36	H2O / CH4 / N2O / Cfc		
6	9.09 – 10.2	9.46	H2O / O3 / Cfc		
7	10.2 – 12.5	10.97	H2O / Cfc		
8	12.5 – 14.9	13.30	H2O / CO2		
9	14.9 – 18.5	16.10	H2O / CO2		
10	18.5 – 25.0	20.67	H2O		
11	25.0 – 35.7	28.57	H2O		
12	35.7 – 99.0	56.80	H2O		
13	3.50 – 4.00	3.67	H2O / CO2		
14	4.00 – 4.50	4.18	H2O / N2O / CO2		
			· · · · · · · · · · · · · · · · · · ·		

Fu-Liou Parameterization Formula $\langle Qext\rangle, \langle \omega\rangle, \langle g\rangle = \sum_{i=0}^9 c_i r_{eff}^{1-i}$

Lidar-Based THMv3 Improved Backscattering

- Revisions to full resolution THMv3 also applied to lidar version.
- PGOM calculations applied to 160° 180° scattering angles of phase matrix.
 - \circ Overall greater P_{11} backscattering than THMv2.
 - THMv2 backscattering appears to match THMv3 at 1064 nm and larger sizes.

Lidar Ratio Improvements for Bulk Properties

- THMv3 lidar ratio generally lower than THMv2 for all 3 wavelengths.
 - Improved backscattering provided by PGOM significantly affects lidar ratio.
- 532 nm THMv3 lidar ratio more consistent with CALIOP Cloud Layer cirrus measurements.
 - More accurate lidar ratio will likely lead to improved lidar-based downstream calculations.

CALIOP CLay5km 2009 Cirrus Lidar Ratio Frequency Distribution

Summary & Future Work

- Revised the full resolution THMv3 and fully developed the lidar version THMv3.
 - Confirmed that aggregate volume is correct.
 - Adjusted habit fraction formula to improve microphysical consistency.
 - Bulk parameterization for Fu-Liou RTM completed.
 - THMv3 lidar ratio more consistent to observations due to improved backscattering.

• Future work:

- \circ Expand PGOM calculations to 0.2 2.2 µm of full resolution THMv3 by using further truncated scattering angle resolution and interpolation.
 - No PGOM backscattering improvement for larger wavelengths (infrared).
 - Plan to have majority done by December.
- Implement bulk parameterizations of THMv3 to Fu-Liou RTM and evaluate improvements in ice cloud retrievals based on satellite instruments.